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Abstract. A generalframework forcalculatinglunar and solartorques on the oceanictidesis

developed in terms of harmonic constituents.Axial torques and theirassociatedangular momentum

and earth-rotationvariationsare deduced from recent satellite-altimeterand satellite-trackingtide

solutions.Torques on the prograde components of the tideproduce the familiarsecularbraking of

the rotationrate.The estimated secularaccelerationisapproximately -1300"/century 2 (less4% after

includingatmospheric tides);the impliedrateofchange inthe lengthofday is2.28 miUiseconds/century.

Torques on the retrogradecomponents ofthe tideproduce periodicrotationvariationsat twice the tidal

frequency. Interactiontorques,e.g.solartorques on lunar tides,generate a largesuiteofrotation-rate

variationsat sums and differencesof the originaltidalfrequencies.These are estimated for periods

from 18.6 years to quarter-diurnal.At subdally periods the angular momentum variationsare 5 to 6

orders ofmagnitude smallerthan the variationscaused by ocean tidalcurrents.



1. Introduction

Brosche and Seller (1996) recently called attention to the interesting role that direct lunar and solar

torques on the ocean tide play in the earth's short-period angular momentum balance ("short-period"

here meaning daily and subdaily). Brosche and Seiler noted that such torques are a potential source

of angular momentum in the earth-ocean system and that this source had been neglected in previous

earth-rotation studies. The purpose of the present paper is to reexamine, clarify, and extend these

ideas. We limit the discussion to the earth's spin rate and ignore the additional complications of wobble

and nutation. It suffices therefore to examine only axial torques. We also limit the discussion to diurnal

and semidiurnal tides of the second degree in the tidal potential, i.e. to the "major" short-period tides.

A qualitative understanding of the consequences of tidal torques can be obtained from the diagram

in Figure 1, which is drawn for the principal semidiurnal tide M2. Two spherical harmonic components

of the ocean tide--the only two that induce nonzero torques--are displayed: prograde and retrograde

components of degree 2, order 2. The prograde component is the classical tidal "bulge" that propagates

westward under the moon; the retrograde component is a similar bulge, generally smaller, that

propagates eastward. ("Prograde" here impliesmoving in the same directionas the tide-generating

body; thisprograde/retrogradeterminology followsstandard tidalusage,but itisopposite that used in

polar-motionstudies.)The retrogradebulge owes itsexistence,of course,to the highly nonequilibrium

form of the oceanic tides;there isno comparable bulge in the body tide.The tidalforceacting upon

the prograde bulge produces the familiarsecularbraking torque (Munk and MacDonald, 1960). The

tidalforceacting upon the retrogradebulge produces a periodictorque at twicethe tidalfrequency.

This latterphenomenon isquite similarto that of libration(Chao et al.,1991;W_insch, 1991) inwhich

the triaxialellipsoidof the solidearth experiencesa periodictorque at exactlythe tidalfrequency as

itrotatesbeneath the moon. But because the ocean'sretrogradebulge travelseastward at twice the

earth'srotation(relativeto the moon), the torques on itare twice as rapid.

In the same manner, there are interactiontorques between tidalconstituents--forexample, solar

tidaltorqueson lunar tidalbulges.These torques have periodicitiesat the sums and differencesofthe



original constituent frequencies, the summed frequencies corresponding to torques on retrograde bulges

and the differenced frequencies corresponding to torques on prograde bulges. These new frequencies are

actually those of the familiar compound tides that occur in many shallow seas when nonlinear dynamical

terms (e.g., quadratic bottom friction) cause interactions between tides. (The two phenomena are,

of course, unrelated.) We thus find a whole new set of frequencies to explore in the earth's angular

momentum budget, previous studies having been confined to only the tidal frequencies. Intriguing as

they are, however, these new terms turn out to be quite insignificant.

In the followingcalculations,earth aneiasticityisignored. This allowsus, among other things,to

neglectthe torques on the lagged body tide and to concentrateon the oceanic problem. Given the

most recent estimatesof the body-tide lag (e.g.Ray et al.,1996),neglectinganelasticitymay induce

errorsofperhaps a few percent at most. There are,nonetheless,stillnonzero torques on the solid-earth

tide,sincethere isa fairlylargeradial-displacementload tidecaused by the oceanic tide,which actsto

reduce the overalltorque by some 30%.

Finally,it isimportant to realizethat the torques under discussionare on the tidalheight

fluctuationsalone,not the entireocean. Torques on the latter,integratedverticallyfrom mean sea level

to the ocean depths, are included inthe solid-earthlibration,which isdependent on the inertiatensor

ofthe whole earth,includingthe ocean,and isdetermined from the gravitationalStokes coefficientsof

the whole earth. This point isindeed stressedby Brosche and Seller(1996),but itisunclearfrom their

paper whether they followedit,sincethey found alltorques ofthe same tidalspeciesto have precisely

the same phase (seeJT _ intheirTable 1). A constant phase does occur forlibration,but itshould not

be expected for torques on the ocean tides.

2. Torque Estimates

Much like the precession/nutation problem (Moritz and Mueller, 1987, p. 52), there are two

ways to compute the required torques. One may compute the direct tidal torque on the ocean tide

(and its load deformation), or one may compute the equal and opposite torque of the ocean tide's



gravitationalattraction(includingits load deformation) on the moon (or sun). The advantage of the

former method is that one may use directly the readily available harmonic developments of the tidal

potential (e.g., Ca_wright and Tayler, 1971) and thereby avoid dealing with the complications of the

lunar and solar ephemerides; the disadvantage is that the torque on the load deformation, requiring

volume integration, is difficult to calculate directly. We nonetheless prefer this method, because by

using the Cartwright-Tayler expansion we find it easier to sort out the frequencies and phases of torque

components and their underlying ocean constituents. In add/tion, the complicated torque on the earth's

load deformation may be handled trivially by exploiting the symmetry of the two torque methods, as

will be seen.

Note that for the problem at hand, torques internal to the ocean-earth system may be ignored.

They would include, for example, the mechanical force of the body tide against the ocean tide and the

Newtonian attraction of the ocean tide on the body tide. In the present analysis, such internal torques

serve only to couple the ocean and solid earth into a mutually rotating solid body.

From the introductory discussion, it is evidently advantageous to express the ocean tidal height,

for any given harmonic constituent of frequency al, in the form (Lambeck, 1980, eq. 6.2.1--allowing for

a misprint in 6.2.1c)

( = _-_ _ Z D_,n cos(air :t=m_b-¢enm) P_ (cos 0), (1)
rn +

comprising prograde (+) and retrograde (-) waves of amplitude D_m and phase lag ¢_m, where

(0, ¢) are spherical polar coordinates and P_ (/_) an associated Legendre function. Lambeck's notation

_-':.+ D ± cos(a :k _) denotes D + cos(a + _3) + D- cos(a - _). This ( is the ocean's tidal height fluctuation

relative to the seabed. The D_m and ¢_m parameters are known either from numerical hydrodynamic

models of the global tide or from space-geodetic measurements (e.g. Schrama and Ray, 1994).

Following Cartwright and Tayler (1971), the astronomical tidal potential at the earth's surface for

a constituent of frequency a2 is written

U -- g/lr_/(5/247r) P_ (cos 6)) sin(a2_ H- ¢) (2a)
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fordiurnaltidesand

U = g/_/(51967r) P#Ccos 8) cos(a2t + 2¢) (2b)

for semidiurnal tides, where g is the gravitational acceleration and the amplitudes H (in length units)

are as tabulated by Cartwright and Edden (1973). Note that frequency al refers to the tidal elevation

(I), while a2 refers to the potential (2); each may be either diurnal or semidiurnal, and a_ may or may

not equal a2.

The potential U acting on the ocean tide _ produces an axial torque of general form

r°" =/v p(x x vu), dy,

where p is the density of seawater and x is a vector from the geocenter to the differential mass element

p dV. This torque can be simplified to a surface integral by the thin-shell approximation:

r: = _ _ sine(VU)_aS=. _ ¢(ou/o¢_)_s,

with dS a differential of area. The corresponding torque of U acting on the solid-earth load tide cannot

be similarly simplified, but it can be trivially accounted for, as noted above, by considering the torque

of the ocean tide's gravitational potential acting on the moon, which is equal to -r_. For that torque,

accounting for the load deformation requires only an additional factor of (1 + k_), where k_ is a load

Love number (Munk and MacDonald, 1960). The equivalence of the two torques implies that Fz must

also include the torque on the deformation via the identical factor. Hence the combined torque is

written

r, = (1+ k'=)p/_ ¢(OVlO_)as = (1+ _4)pa=,_ ¢(ov/o¢)sineaede. (3)

With the previous expressions for _ and U, integration is straightforward. Owing to orthogonality

of the spherical harmonics, only terms in ( with (n, m) = (2,1) for diurnal tides and (2,2) for semidiurnal

tides are effective. CAn identical simplification occurs for work and dissipation integrals; see, for

example, Lambeck [1980] and Platzman [1984].) Inserting (1) and (2) into (3) and expanding terms,

one finds intermediate integrals of two types (note that m, l = 1 or 2 and that 6mr is Kronecker's



6function)

and

_o 2_ sin(air + ra_) sin(a2t + re) de = 7r 6mz cos(air a2t)

02_sin(alt+ me) sin(a2t- I¢) d_ = cos(alt+ a2t),

and similarterms involvingcosinesand sine-cosineproducts, each of them yieldingeithersums or

differencesoftidalfrequencies.The totalresultingtorques are

r,= -_/(6"/s)(i+ k_)pGM_ _ D_ cos(a_tT a_t± ¢_) (4a)
+

fordiurnaltidesand

r,= -_/(96_/s)(I+ _4)pCM_ _ D_ sin(a_t_ast+¢_) (4b)
+

for semidiurnals.The earth'sgravitationalconstant GM has been used in place ofga_. When a tidal

constituent'spotentialisacting on itsown tidalbulge,then al ----a2 (_ a) and the torque integrals

simplify to

_)_M_r = 4(0./5)(_ + lD_ cos¢+ + D_ cos(2a ¢_)_

for diurnal tides and

r, = -_/(96_/5) (_+ k_)pGM/_ {D + sin ¢+ + D_-s sin(2a - ¢_) }

for semidiurnals. In each expression the first term on the right is the secular braking torque.

The implications of I'= for the earth's angular momentum budget are considered below for three

frequency regimes: secular (al - as = 0), long period (al - a2 ¢ 0), and short period (al + as). This

requires estimates of the ocean-tide coefficients + _:D,m, Cnm, to which we now briefly turn.

3. Oceanic tide coefficients

For the oceanic tide coefficients we adopt (see Table 1) three sets of estimates determined from

satellite geodetic measurements, one from Geosat altimetry, one from Topex/Poseidon (T/P) altimetry,



and one from multiple-satellite tracking. In the case of altimetry, the _ ±D2,_,¢2,n coefficients are

determined by numerical quadrature of deduced global oceanic cotidal charts. In the case of satellite

tracking, they are determined directly from the tidally induced orbital perturbations (Lambeck, 1980),

often as a part of a simultaneous, large-scale inversion for the earth's gravitational Stokes coefficients

(e.g., Christodoulidis et al., 1987). The T/P and satellite-tracking'solutions are more accurate than

any available numerical hydrodynamic model of the tides; see Shum et al. (1997) and Figure 1 of Ray

et al. (1996).

Because altimetry is a geometical measurement while tracking is a gravitational measurement,

there are some important differences. For example, they differ significantly in estimates of the $2 tide,

since the tracking is also sensitive to the $2 atmospheric tide (e.g., Cartwright and Ray, 1991); a smaller

effect may also occur in K1 owing to seasonal variations in the $1 atmospheric tide. Both altimeter and

tracking solutions also differ very slightly owing to the different ways that they are affected by earth

anelasticity (Ray et al., 1996). These small anelastic effects may be ignored for present purposes.

The Geosat satellite altimeter determination is taken from Cartwright and Ray (1991). These

tidal coefficients are less accurate than those from the later T/P mission (e.g., Shum et al., 1997), and

they should now be considered obsolete. They are used here to compare deduced secular acceleration

estimates to previously published estimates from the same model.

The T/P tidal coefficients are updates to those published by Schrama and Ray (1994). In addition

to incorporating more altimeter observations and improving horizontal resolution, this solution uses

a half-dozen supplemental hydrodynamic tidal models in various marginal and polar seas to ensure

complete coverage of the global ocean. The hydrodynamic model of Le Provost et al. (1994) is used for

all latitudes above the 66 ° turning latitude of the T/P satellite. The M2 estimates of + +D22, ¢22 were

previously published in Ray et al. (1996).

All satellite altimeter estimates of ocean-tide coefficients have been corrected for the geometrical

effects of the body tide and the load tide. The latter is based on the iterative method outlined in

Cartwright and Ray (1991; appendix A) and used loading Love numbers h_ from Farrell (1973). For
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T/P, the body tide was computed with Love number h2 = 0.609 for all tides except Kl and its nodal

sidelines for which h2 = 0.52. For Geosat, h2 = 0.619 was used in the original mission data products,

but our M2 and $2 coefficients were later adjusted to conform with h2 = 0.609 (Cartwright and Ray,

1991).

The third set of estimates is taken from EGM96S (Lemoine et al., 1998), a satellite-only solution

for the earth's gravitational field based on optical, doppler, laser, and GPS tracking of 40 artificial

satellites. Only tides that cause significant long-period perturbations in satellite orbits were included in

this solution, so they are limited to prograde terms only (Lambeck, 1980).

The EGM96S model provides well-calibrated estimates of tidal coefficient uncertainties, for which

the reader may refer to Lemoine et al. (1998). For M2 the EGM96S standard error for D+2sin¢ + is

0.024 cm; other semidiurnal tides are comparable, while diurnal tides tend to be 3 to 4 times larger.

Unfortunately, owing to the manner in which they were developed, standard errors for the two altimeter

solutions are not available. However, M2 errors have been estimated for two other T/P solutions---by

Ray et al. (1994) and by Egbert et al. (1994)--and these should be comparable to the Schrama and Ray

(1994) solution; for M2 these uncertainties are 0.036 and 0.026 cm, respectively, which are comparable to

EGM96S. Work is in progress (G. D. Egbert, personal comm., 1998) to establish a more comprehensive

error model for the altimeter tide solutions. For our purposes, the given rough figures are adequate.

4. Secular braking of the earth's rotation

In this section, we examine only those terms in rz having no explicit time dependence, taking

al = a2. These terms, dependent only on the prograde oceanic tide coefficients, completely determine

the present-day secular braking of the earth's rotation rate. That secular acceleration is given by

= r, lc

where Fz here represents the appropriate relevant terms in (4a,b). Here C = 8.036 × 10 s7 kgm 2 is the

polar moment of inertia of the whole earth.

Estimates of the secular _t terms from the three tide models are listed in Table 2, along with
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standarderrorestimatesfromEGM96S.Thepotentialamplitudes/_and the (slightly) frequency-

dependent factor (1 + k_) are also tabulated; the former are from Cartwright and Edden (1973), the

latter from Wahr (1980). Other required constants are:

p = 1035 kg m -3

GM = 3.986 x 1014 m 3 s -2.

As is well known, the dominant tide in _, responsible for about 70% of the total acceleration, is

M2. The next largest tide is $2, but its oceanic effect is partly cancelled by the $2 atmospheric tide,

which tends to accelerate the earth's rotation rate by roughly +55" cy -2 (based on spherical harmonic

coefficients listed in Haurwitz and Cowley, 1973). The totals listed in Table 2 are misleadingly close, a

coincidence of favorable cancellations.

The largest tide neglected in Table 2 is probably v2. It can be estimated from the semidiurnal

admittances; for the EGM96S model, we get D+2 = 0.121 cm, ¢+ = 117 °, which implies l_l = -1.4" cy -2.

A handful of other minor tides would add a few more arcseconds.

In passing, we note that the long-period tides, with zonal potential

V = g/74(5/4_) _(cos e)cos _t, (2c)

add nothing to the earth's secular rotational braking. With perfect symmetry in the _b direction (cgU/O_

= 0), its axial torque is identically zero. This has not been sufficiently clear in some of the recent

literature.

Allowing for an atmospheric contribution of 4-55'* cy -2, we have a total secular acceleration of

approximately - 1250" cy -2. The corresponding rate of change in the length of day is

/i. = -_//fl ----2.28 ms/century.

(Strictly, the units are ms/day/cy, but the day -1 is generally assumed.) The observed secular

acceleration (Stephenson, 1997) includes, of course, nontidal effects as well, the most important being

an additional 4-300" cy -2 usually attributed to melting of polar ice and/or the earth's viscous rebound

(Yoder et al., 1983).
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Finally, it is of interest to compare the _ estimates for the CartwrightoRay model to previously

published estimates for that model in Ray (1994). The previous values were computed, following

Lambeck (1977), as follows: the expression for the gravitational attraction of the ocean tide on the

moon is converted from spherical coordinates into lunar Keplerian elements and then inserted into the

Lagrange planetary equations (Brouwer and Clemence, 1961), yielding secular rates for the moon's

mean motion h, eccentricity _, and inclination I. Invoking conservation of angular momentum then

gives the earth's fl. The two approaches to l_ agree to within about 1% for M2 and within 1" cy -2

(the resolution of Table 2) for all other tides. These can likely be further reduced by closer attention

to consistency in geophysical and astronomical constants and models; this will become more critical as

observational accuracies continue to improve.

5. Long-period variations

The same prograde oceanic terms responsible for the secular acceleration also induce long-period

oscillations in the earth's rotation rate when al _ a2. We consider two cases: (1) a constituent acting

upon its nodal sideline, which generates 18.6-year variations and (2) the case when gl, _2 correspond to

the largest tides, M2 and $2, which generates variations at the frequency of the near-fortnightly MSf

tide.

5.1 Variations at 18.6 years

All lunar tidal constituents undergo an 18.6-y nodal modulation as the lunar orbital plane precesses

around the earth. As a consequence, any tide's contribution to the secular braking torque must undergo

a corresponding periodic variation. O1 has one of the largest nodal modulations, so we concentrate

initially on it. The O1 modulation in _t will be augmented by other lunar diurnal tides, all of which

are largest when the lunar orbit is maximally inclined to the earth's equator. This occurs when the

longitude of the moon's ascending node is aligned with the equinox (i.e., when the longitude of the node

is zero). These diurnal-tide modulations are offset, however, by the semidiurnal tides, which are largest
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when the lunar orbitisclosestto the equator (K2 isan exception).As willbe seen,the cancellation

between diurnalsand semidiurnalsturns out to be nearlycomplete.

Consider Eq. (4a) when al isthe frequency of the primary 01 line,545.555 in Doodson's

nomenclature, and a2 isthe frequency of the primary nodal line,545.545. Then I_ ----4.945 cm

(Cartwright and Edden, 1973). Adopting + +D21, ¢21 from the EGM96S solutionyields

-_/(67r/5) (1 + k_)pGM[-ID+I cos(at + ¢+) = -7.45 x 1014 cos(at + 46 °) N m

for the relevant component of the torque rz. Here, at = axt - a2t = lq_t = N _ where N I is the negative

of the longitude of the lunar node (this being the argument associated with the fifth Doodson number)

and/q_ the corresponding angular frequency, 1.070 x 10 -8 s -1 = 1 cycle/18.6y.

Consider now the complementary torque obtained by switching al and a2. In principle, evaluation

of this torque requires knowledge of the nodal line's D + and ¢+. But because the deep-ocean tidal

admittance is known to be smooth (Munk and Cartwright, 1966), these parameters are equivalent to

the primary line's parameters, but with amplitude scaled by the ratio in a_r; the known exceptions

to this in tide-gauge data occur only in shallow, nearly resonant seas (e.g., Ku et al., 1985) and are

unlikely to affect a global coefficient of spherical harmonic degree 2. Hence this second torque is

-_/(67r/5) (1 + k_)pGM[ID + cos(-at + ¢+) = -7.45 x 1014 cos(-at + 46 °) S m

and the sum of the two torques is

-2x/(61r/5) (1 + k_)pGM[-ID + cos ¢+ cos at = - 1.05 x 1015 cos N' N m

At the 18.6-y period, we again assume that C represents the moment of inertia of the whole earth.

The amplitude of the acceleration _/is thus -1.31 × 10 -2s s -2. The corresponding increment in the

earth's rotation, expressed in terms of variations in Universal Time, is

: - =AUT fldt

= (/_t2fl)-I x 1.31 × 10 -23 cosN _

= 1.57cosN _ ms.
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In similar fashion, the major lunar tides generate the following terms:

QI: 0.07 cosN' ms

O1: 1.57 cosN' ms

KI: 1.90 cosN' ms

N2: -0.17 cosN' ms

M2: -4.00 cosN' ms

K2: 0.36 cosN' ms

The signs of these terms are consistent with the nodal modulations of these tides, which act to reduce

the amplitudes of M2 and N2 when N t = 0 and to increase the other four (Doodson and Warburg, 1941,

Table 7.3). Of the semidiurnals, K2 is anomalous because it is a "declinational" tide: it arises from the

modulation of the principal tide M2 caused by the twice-monthly excursions of the moon away from the

earth's equator. This modulation, and hence the amplitude of K2, therefore increases, not decreases,

with the lunar declination.

The large cancellations between diurnals and semidiurnals leave a residual of only 0.27 ms. This

variation in UT is very small compared to the dominant tidal variation at the nodal frequency, which

is due to the body tide's direct perturbation to the moment C. According to Yoder et al. (1981), the

body tide generates oscillations in UT of amplitude 172.05 ms.

There is no dynamical reason for supposing that the above cancellations might in fact be perfect,

since they depend on the tidal behavior of the oceans. One might imagine, for example, an ocean that

somehow suppresses one tidal species, causing far less cancellation than now exists.

5.2 Variations at MSf

In a completely analogous manner, tidal interactions between constituents generate a large suite

of periodic oscillations in the rotation rate with periods correspondingly shorter than 18.6 y. One of

the largest is presumably the torque of M2 on S2, and vice-versa, which generates oscillations at the

frequency of the near-fortnightly tide MSf (period 14.77 days). Because the potential amplitude of MSf
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is relatively weak (compared to, say, the nearby tide Mf), it exists in the ocean primarily as a nonlinear

compound tide confined to shallow water. Its direct effect on UT through the body-tide variation in

C is correspondingly weak. The ocean-torque mechanism is therefore more important for MSf than

it is for most other long-period tides, and in fact it might conceivably explain the anomalotjsly large

observed variation in UT1 at this frequency (Chao et al., 1995). The question has been examined

recently by Cartwright (1997), who finds the effect too small to explain the anomalous observations.

The following calculation repeats Cartwright's in the context of the above formalism.

Unlike the nodal variation, the lag ¢+ for M2 and $2 are different, and the two torques cannot be

trivially combined as in the nodal modulation case. The variation in UT1 is (with obvious subscripts)

= (a2 f_C)-i _./(967r/5) (1 + k_) pGM {_ItDM sin(--at + CM) + [-tMDs sin(at + CS)}AUT

Here a is the frequency of MSf, and at - 2D where D is the mean lunar elongation. At this frequency,

the mantle is presumably uncoupled from the core and C should be decreased by 12% (Yoder et al.,

1981). After some algebraic manipulation, with M2 and $2 coefficients from the Schrarna-Ray model,

this becomes

AUT = 0.23 cos(2D + 3°) _s.

The excess length of day is

AA = 0.098 sin(2D + 3°) ps,

very close to that estimated by Cartwright (1997). According to Yoder et al. (1981), the main

body-tide effect at MSf causes a variation in UT of amplitude 78.1 ps. Hence, as Cartwright noted, the

ocean-torque interaction is of no great significance.

6. Short-period variations

We come finally to the subject of Brosche and Seiler (1996) who suggested that torques on the

ocean tide may be important at daily and sub-dally periods. The torques involving 01, K1, and M2

are likely to be of comparable orders of magnitude. It suffices here to examine the torque of M2 on its
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own retrograde oceanic bulge, which produces variations at twice the M2 frequency. (Note that other

combinations of tides will produce variations at precisely the M2 frequency, for example K1 + O1, and

M4 - M2. These torques are likely comparable or smaller than the M2 +M2 torque.)

The angular momentum variation associated with the torque of M2 on its retrograde bulge is (with

now the frequency of M2)

J = / F, dt

= (2a)-' _/(961r/5) (1 + k_) pGM[-ID_ cos(2at - ¢_)

3 x 1019 cos(2at- 26 °) kgm2s -1,

based on the D_, ¢_ Schrama-Ray estimates. This is 5 to 6 orders of magnitude smaller than the

angular momentum exchanges between the ocean and mantle that are due to tidal currents, according

to estimates published by Seiler (1991) and Chao et al. (1996). We conclude that for the short-period

angular momentum balance, direct torques on the ocean tide are of no significance.

This conclusion should be no surprise if we compare the oceanic torque mechanism with the

closely related solid-earth libration. Libration is caused by a 70-meter difference between the semhnajor

and semiminor equatorial axes (Torge, 1980), and the torque on this solid-earth "bulge" causes UT1

variations of order 1 _s (Chao et al., 1991; Wfinsch, 1991), which is an order of magnitude smaller than

the variations induced by oceanic tidal currents. In contrast, the ocean tide is a bulge of only a few cm

of water. The corresponding UT1 variations must therefore be 4 to 5 orders of magnitude smaller than

the libration effect.

7. Summary

A general framework for computing lunar and solar tidal torques on the oceanic tides allows both

the secular acceleration and a large suite of high-frequency periodic accelerations in the earth's rotation

to be estimated. Estimates of the torques and accelerations require only the known amplitudes in

a harmonic development of the tidal potential (e.g., Cartwright and Tayler, 1971) and the degree-2
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sphericalharmoniccoefficientsof the oceanic tidal elevations. The latter are available from numerical

hydrodynamic models, from satellite altimeter analyses (e.g., Schrama and Ray, 1994), or from satellite

orbit-perturbation analyses (e.g., Christodoulidis et al., 1987). For the secular acceleration we find

(Table 2) a total oceanic contribution of approximately -1300 H cy -2. All the short-period variations

turn out to be small. The torques on the retrograde bulges, which generate rotation variations at twice

the original tidal frequencies, are especially small and can be ignored in studies of the earth's angular

momentum balance.
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manuscript.
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Figure 1. Geometry of the prograde and retrograde oceanic tidal bulges and the moon, seen from above

the earth's north pole, in a frame rotating with the earth. The prograde bulge is shown lagging the

moon by an angle ¢+/2 _ 65 ° according to the estimate of Schrama and Ray (1994). The rotation rate

is ft = 7.2921 x 10 -5 s-l; the moon's mean motion is n ----2.6653 x 10 -e s -1.



Table 1. Estimates of Tidal Coefficients

Tide D+m, cm ¢_m, deg D_m , cm ¢_-m, deg

21

Geosat model - Cartwright Fd Ray (1991)

Qt 0.49 39.3 0.27 201.5

Ot 2.33 42.7 1.12 210.2

PI 0.86 47.1 0.47 225.5

K1 2.56 47.2 1.45 225.9

N2 0.70 127.4 0.11 351.7

M2 3.45 131.6 0.59 22.5

$2 1.16 126.2 0.31 94.0

K2 0.31 125.8 0.08 99.5

T/P model - Schrama gd Ray (1994, updated)

Ot 2.592 46.09 1.160 209.58

Kt 3.001 42.43 1.528 224.92

N:, 0.702 119.51 0.117 10.74

M2 3.231 129.38 0.585 26.07

$2 1.241 131.91 0.217 80.04

EGM968 model - Lemoine et al. (1998)

Qt 0.587 37.93

Ot 2.732 45.09

Pt 0.991 43.59

Kt 2.828 39.45

N2 0.639 114.97



Table 1. (continued)

Tide D+m, cm ¢+m, deg D_m , cm ¢_rn, deg

22

M2 3.266 128.21

S_ 0.785 145.90

K2 0.273 122.03

m -- 1 for diurnal tides, 2 for semidiurnal tides.



Table 2. Estimates of Secular Acceleration _/by Oceanic Tides

Tide /7, m (1 + k_) C-R S-R EGM96

23

Q1 0.0502 0.689 -3 -3 -3 4- 1

O1 0.2622 0.689 -63 -66 -71 4- 3

P1 0.1220 0.700 -10 -13 -13 4- 2

KI 0.3687 0.730 -96 -122 -120 4- 7

N2 0.1210 0.692 -38 -42 -40 4- 2

M2 0.6319 0.692 -924 -894 -919 4- 9

$2 0.2940 0.692 -156 -154 -73 4- 5

K2 0.0799 0.692 -II -12 -I0 4- 1

Total -1305 -1306 -1304 4- 12

Units of l_/are arcseconds per century _, I" cy-2= 4.868 x 10 -25 s-2.

C-R = Cartwright and Ray (1991); S-R = Schrama and Ray (1994);

EGM96 = Lemoine et al. (1998). S-R estimates of QI, Pl, K_ are inferred

from the admittance defined by its major tides. The EGM96 estimate of

$2 includes effects of the $2 air tide, for which +55 has been added to its

total.
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